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and bit error probability of very dense WDM networks employing OOK modulation with direct.
detection and Fabry-Perot filter as channel selector. Reed-Solomon error-correcting codes and
concatenated Reed-Solomon/Reed-Solomon codes are employed to pack the optical channels in
the very dense network. The discrete-time model utilizes the trapezoidal expression together

with signal samples obtained at the Nyquist rate equal to twice the Fabry-Perot spectral range.
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channels are packed extremely close to each other. Such networks can be realized by the use of powerful
error-torrecting codes suitable at very high bit rates. We propose the Reed-Solomon (RS) error-correcting
codes and the concatenated Reed-Solomon/Reed-Solomon (RS/RS) codes. We propose these codes instead
of the single error-correcting Hamming codes because very dense WDM networks encounter severe crosstalk
degradation which renders Hamming codes virtnally useless. Another reason for using RS/RS codes is that
concatenated codes allow the use of two relatively short RS codes with modest error-correct ing capability,
one as the inner code and the other as the onter code to achieve almost the same coding gain as the equivalent
long code. Short codes with modest error-correcting capability simplify decoder design at very high data
rates. Also, Reed-Solomon codes allow the implementation of the coder and the decoder at the code symbol
rate, which i1s much smaller than the bit rate; therefore, high-speed electronics can be used. These features
make short RS codes and short concatenated RS/RS codes practical for WDM networks. Furthermore, the
coding gain obtained by these codes provide a substantial increase in the number of optical channels in a
very dense WDM network as compared to an uncoded WDM network. This is particularly attractive in an
all optical local area network (LAN).

The analysis of very dense WDM networks poses a great challenge from the computational point of view.
Error-correcting codes allow the optical channels to be spaced very closely. Analyses employing a frequency-
domain approach using the Fourier transform [1-3] would resuit in prohibitive computer time. This fappens
because the beat interference between adjacent channels must be taken into account. Neglecting the beat
interference as in the analysis of uncoded dense WDM networks reported in references [1--3] would net be
appropriate for very dense WDM networks with error correcting codes. In this paper we present a novel and
very computationally eflective method called discrete-time analysis to assess the capacily of very dense coded
WDM networks employing on-off keying {(OOK) modulation with direct detection and a Fabry-Perot (FP)
filter as the channe] selector The discrete- time analysis enables the evaluation of the bit error probability
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VVhen the very dense WDM network employs the Fabry-Perot (FP) filter as a channel selector, 11 s
sufficient to use N +1 = o 4 1 complex samples or 2{a7' 4+ 1) rcal samples (« is the fee spectral range
(F'SR) of the FP filter and 1/T" is the coded information rate) to evaluate the bit error probability and power
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penalty /coding gain including all intersymbol interference (ISI) and adjacent channel interference (ACI)
effects. Assuming that the very dense WDM network operates with all channels confined to one FSR of the
FP filter, then oT + 1 complex sighal samples during any coded bit interval of 7" seconds imply sampling
the bit at a Nyquist rate of 2a (Hz). Coincidentally, the impulse response of the equivalent lowpass FP
filter is an infinite sequence of impulse functions equally spaced in time by 1/a seconds. Therefore, the FP
filter practically provides T + 1 complex samples for the complex baseband (equivalent lowpass) very dense
WDM signals. The oT 41 complex samples of a detected bit are sufficient to pravide an accurate evaluation
of the bit energy. In Section 2, the discrete-time coded analysis is presented. The numerical results are
presented in Section 3 and the concluding remarks appear in Section 4.

2 Discrete-Time Analysis

The OOK receiver for the very dense WDM signal is shown in Fig. 1. The receiver contains a frequency
selective FP filter to demultiplex one of the M + 1 channels. For convenience, we designate Channel 0 as
the desired channel and Channel & as another channel where £ = —M/2,--.,-1,1,---  M/2 and M Is an
even integer. The optical signal is received by the FP filter tuned to the wavelength of Channel 0, which
allows the Channel 0 data signal to pass and rejects signals in the M adjacent channels. The photodetector
demodulates the OOK signal to a baseband signal. We assume the photodetector has a responsivity ®. The
baseband signal is then amplified by a low-noise amplifier which adds a postdetection thermal noise 7(¢)
with spectral density No. Both the signal plus noise are integrated over a coded bit interval T to obtain a .
decision variable Y, which is compared to a threshold Vi to determine whether an “0” or “1” was sent. The
detected bits are then processed by the decoder to correct errors.

We consider the equivalent lowpass (complex envelope) data sighals in Channel 0 and Channel k as
follows:

bo(t) = VP 3 bopr(t—il) (1)

i=—Lg
[}
bi(t) = VP 3 bpel el uipr(t — £T) (2)
i=—L

where P is the received optical power per channel, by{0,1} is the bit in Channel 0 during the i-th time
period (iT, (i +1)T), Lo is the number of bits which trail the detected bit by o, b ¢¢{0, 1} is the bit in Channel
k during the £-th time period (£7', (£ + 1)T), L is the number bits in Channel k which trail the bit by g, ¢x
is the Channel k phase offset from Channel 0 (assumed to be uniformly distributed in (0, 27) radians), fi
is the frequency spacing between Channel k and Channel 0 and f = —f_;. The pulse function pr(?) is
defined as ' 0 T i< )T
. ) i <t (t+
pr{t - iT) = { 0, otherwise . ()

The received equivalent lowpass optical signal at the input of the FP filter is given by

0
n(ty = VP 2 boipr(t —iT)

t=—Lg
Mj2 0
+VP Z Z b e’ PreI T Ip (t — T k£ : {4)

k=—M/[28=-L

The ideal single-cavity FP filter is a causal, linear, time-invariant filter whose equivalent lowpass Impulse
response is given as follows [1]:

h(t):(l—r)ir"‘& (tm —';1) (5)

m=0

VII-03



where r is the power reflectivity and « is the free spectral range. We assume that o 1s a multiple of the
coded bit rate 1/7T, that is, T is a positive integer.

Performing the convolution of (4) and (3) and restricting the cutput s(¢) of the FP filter to the detected
interval (0 < t < T, we obtain

s(t) = sp(1) + s15:(1) + sacs(t) (6)

where sp{t} is the filtered desired signal, s;ss(t) is the filtered 151 signal, and sa¢/(1) is the filtered ACI
signal. These three terms are evaluated as follows:

sp(t) = \/Fbg,opT(z)*ufr)Zrmé(pg‘-)

[ort]

= (14)\/Fba,ﬂgormpr(z_%), o<r< (7

where the notation * stands for convolution operation and [ef] is the integer part of of. The ISI term is

\FZbg,pT(z—sT }—r)z e (1 m)

i=—Lg

il

srsr(t)

[at]—iaT

(1~0)VP i D DR 2 (Ao

i=—Lg m=[at]-{i+1)eT
0<t<T. (8)

i

Similarily, using the above procedure in (7) and (8) the ACI term can be cvaluated as

Mi2 2} .
‘SACI(i) - \/__ E Z bk£61¢keJ2Wfk1p (t‘PT l—T' ZTme( i'?l)
—hfiz2 - m=0
ko
Mf2 [et]
= (1- T‘)\/_ Z b, ped OF Z #ed 27 St m/“)PF ( Iu)
k=—Mj2
k¥ED
M/2 ~1 lat]—LaT
H1=r)WP Y DT byl 3 P it faltom o) (t e %) )
PO VS =L m={af]—{¢+1}aT
k#0
0<e<T . (9)

The decision variable ¥ appears at the output of the integrator. 1t consists of a signal component X and
an amplifier noise component N,

Y=X+Na, (10)

where .
X = R/ [s(£)1*dt (11)

and .
Ny = /O n(1)dt (12)
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Here n(t) is a zero-mean Gausstan process of spectral density Ng. Thus, N4 1s a Gaussian random variable
with zero mean and variance Ny7'.

Let Z = RP\/Ty/Ng = RP\/T/r.Ny be the signal-to-noise ratio, where T, = 7'/r. is the uncoded bit
duration and r. is the code rate. We define the power penalty/coding gain (dB) as the increase/decrease in
Z (dB) required for the WDM network to achieve a required bit error probability P, at the output of the
decoder over the uncoded single channel operation without any filtering effect.

For a detection threshold Vr and an ISI/ACI bit pattern b = {by, bz re?®¢} for & = —M/2, ... M/2,
k#0and £=—-L, ... ,0,and { = — Ly, -, —1; the conditional transition probability error for Channel 0 is
given by

1o Xa(b) = Vr 1 VT"XU(b)>
P.(b) = = —_— - s W 13

where

Qz) = 712—;[0 eV My (14)

and Xo = X when by g = 0 and X; = X when byg = 1.

We consider concatenated RS/RS with the inner code (n), k;) and outer code {n3,k3). The inner code
has length ny = 2™ — 1 with m bits per symbol and can correct {; = {n; — k1)/2 symbol errors. The outer
code is a shortened RS code [4] with length ny and error correcting capability t3 = (nz — k3)/2. The RS/RS
code rate is r. = ki ky/nyng.

For a given (n, k) RS code with ¢ = {n - k)/2 error correcting capability, the symbol error probability p,
at the decoder output is given by [4-5]

"4t ( n ) , e
;s < — 1- I 15
pe 3 2] )ra-n (15)
where p is the symbol error probability at the RS deceder input. For the concatenated RS/RS code the symbol
error probability p,, at the output of the inner RS decoder is determined by (15) with p =1 — (1 — P, )™
where P, is the channel transition probability given in (13). The symbol error probability p,, at the output
of the outer RS decoder is determined by (15) with p replaced by p,,. The bit error probability P, is obtained
by multiplying p,, with the factor (ny + 1)/2n, to account for the average number of information errors per
symbol error [5]. This P. is then averaged out over all ISI/ACI bit patterns.

The evaluation of (11) and subsequently (13) poses a great challenge for very dense WDM networks. A
straight-foward computation of X in (11) using (6)—(9) would be computationally prohibitive. One approx-
imation would be to neglect the beat interference term {sscs(¢){? as done previously in {I-3]. For a very
dense WDM network this would result in an overestimated capacity. In the following discussion we introduce
a discrete-time analysis to evaluate {11) and (13) without neglecting any terms in |s(#)|* and with highly
efficient computation.

"The discrete-time analysis employs N + 1 = oT + 1 complex samples of s(t) in (6)~(9) to evaluate the
integration of |s(¢)|? in (11) with a trapezoidal expression,

R N-1
X=oo {ls(tow +Is(tn)l +2 37 |s(fn)|2} - (19)

In practice, the values of the spectral range-coded bit duration N = aT range from a few hundreds to a few
thousands, thus the right side of (16) can be evaluated with a very high degree of accuracy.

We now take samples of s(1) at time ¢, = nfeor, n = 0,1,--- N = aoT. Thereare N+ 1 = oT + 1
complex samples, or equivalently N + 1 samples for the in-phase component of s(1) ard N + 1 samples for

very dense WDM signal s(t) is totally confined to the spectral range a of the FP filter. (That is, the absolute
bandwidth of s(t) is a.) Using (6) we obtain

s(tn) =5 (g) = sp(tn) + s15i{tn) + sacr{tn) . (17)
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(1—r)VPboo Z pr (t,, ~

The terms sp(tn), s151{tn), and sacs(z) can be evaluated from (7), (8), and (9} as follows:
T
m=0 )

(18)

i

Sp(tn)ZSD (-;E)
0<n<N.

= \/Fbglo(l—f‘n),

We have used the fact that pr{(n ~ m)/a] = 1 if m < n and pr[(n ~m)/e] = 0 if m = n, by definjtion (3).

For the term sysr(tn) we have
-1 [otn] —tN m
ot = (3) = Q=P S S i)
1=~ Ly me={aia ]+ 1N —
-1 .
= VN -DVP Y b, 0<ng N, (19)
i=—Lp
Similarly, the term sac;(¢n) can be evaluated as
. M]2 lets)
saciltn) = (1-— r)\/F Z bk_gej¢* Z rmez"f"(t“_m/“}pq' (tn — -—)
ke ATF2 m=_0 ‘
kFO
latn] n
27 fx (ta—m/fea)

Mf2 ~1
+(1 - T‘)\/ﬁ E Z bkite”"‘ Z rMe
m:[ot,,]-—(t-{—l)aT

|

K= M/2 {=-r
k%o
/ my
Mje j2anf fo mn
_ _ ien | & T
= {1 r)ﬁ z b 0e? ¥ [1 — pre—i2nfife
kz—M/2
kECG
M2 -1 _
QWP 3 3 bt
k= Mf2 t=-L
(20)

k20
(re—j%rjk,’a)n-—(t-l—l)N _ (re-»j'.erk,’a)n*lN
[ 1 — re-127fala » Osns N

The results tn {17)-(20) can be used in {11), (13)-(14) to obtain the power penalty/coding gain and the

(21)

average bit error probability with the following threshold
1
Vr = 5 (Xllmin + XO,max}

where X min = min{X } when by ¢ = I and Xomax = max{X} when b g =0 with X given in (18).

3 Numerical Results
In this section we present the numerical results obtained via the discrete-time analysis for botl: concatenated
RS/RS codes (15, 13)/(13, 11} and RS code (31, 27). The FP filter has a spectral range o = 3800 GHz, a
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power reflectivity » = 0.99 and hence the finesse 1s 7/7/(1 — r) = 312.6. The number of samples taken is
N = a7 = 2000. Thus the corresponding coded hit rate per channel is 1/7 = 1.4 Gb/s. The total number
of channels in the coded network is M + 1 = oT'/I where I is the channel separation normalized to 1/7.
The aggregate network capacity C is the number of channels times the bit rate 1/7; = r. /T where r, is the
code rate, that is, C = (M + L)r /T = r.a/l. Figure 2 shows the power penalty/coding gain (dB) versus
the normalized channel separation [ for the {15, 13)/(13, 11) codes at a bit error probability of 10715, For a
power penalty of 1.2 dB, the resulting normalized channel separation is I = 8 yielding an aggregate network
capacity C' = (11/15)(3800)/8 = 348.3 Gb/s. Also plotted in Fig. 2 is the power penalty for an uncoded
network. We use the same number of samples, that is, N = oTy = 2000. The channel separation is now
normalized to the bit rate 1/7}. The total number of channels is M + 1 = a7} /I and the aggregate network
capacity is C = (M + 1}/T, = a/I. For the same power penalty of 1.2 dB, the resulting normalized channel
spacing is 14 yielding an aggregate network capacity C = (3800)/14 = 271.4 Gb/s as compared to 348.3
GB/s for a coded network. Thus the use of (15, 13)/(13, 11) codes provides approximately 28% increase in
capacity. On the other hand, assume that the aggregate capacity of the coded network is the same as that
of the uncoded network, that 1s, 271.4 Gb/s. Then, the channel separation normalized to the coded bit rate
1/T is 10.3. This corresponds to a coding gain of 0.2 dB. The aggregate power gain versus the uncoded
network is therefore equal to 1.4 dB.

In Fig. 3, the performance of the coded network is shown as bit error probability versus the input
signal-to-noise ratio with the normalized channel separation as a parameter. Also plotted i1s the curve for a
single channel operation without any filtering effect. In Fig. 4, the power penalty/coding gain (dB) versus

normalized channel separation is shown for RS code (31, 27). This code has an error correcting ca,pability of

ha atavatad I 15 192% f/19.
two errors as \.unuyatud to one error for both inner and outer \,udca of the concalenateq coues \J.g) 10)/\10

11). At 1.2 dB power penalty the channel separation is about 8.4 yielding an aggregate network capacity
€ = (27/31)(3800)/8.4 = 394 Gb/s. Thus the use of code (31, 27) provides an approximate 45% increase
in capacity when compared to the capacity of an uncoded network. If the aggregate capacity of the (31,
27) coded network is set to be the same as that of the uncoded network (271.4 Gb/s), then the normalized
channel separation is 12.21. This yields a coding gain of 0.5 dB and hence an aggregate power gain versus
the uncoded network of 1.7 dB.

In general, a single RS code performs slightly better than concatenated RS/RS codes with the same error
correcting capability. The advantage of the concatenated codes is that the inner and outer codes need to
have only half the error correcting capability, making them much easier to implement at high bit rates.

4 Conclusion

We have presented a novel discrete-time model to analyze the bit error probability and power penalty and
coding gain of direct detection WDM networks employing OOK modulation and single cavity FP filter at

1 Jal
the receiver. The discrete-time approach enables the decision variable to be evaluated by the trapezoidal

expression based on aTl’ + 1 complex samples of the complex envelope of the WDM signal at the output
of the FP filter. The simplicity of the model makes the computation highly efficient. Since the number of
samples a7 + 1 is usually large for practical FP filters, the results are highly accurate. This is especially true
for coded networks with closely packed channels where the beat interference between ACI channels cannot
be ignored and the calculation is too computationally prohibitive to be included as reported in [1].
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Figure 1: OQOK receiver for very dense WDM signal with error-cerrecting codes.
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Figure 2: Power penalty/coding gain versus normalized channel separation for concatenated (15, 13}/(13, 11)

codes with N = 2000. The channel separation is normalized to the coded bit rate 1/T for the coded network, and to
the bit rate 1/} for the uncoded network.
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Figure 3:

Bit error probability versus signal-to-noise ratio as a function of normalized channel separation for
N = 2000.

VI1I-08

Detector — ) Decoder -———



Read—Solomon (31,27} Goding (N-2000)
T T

? T T l? | I T T
1 -
L* Uncodad Power Panalty
8- S " 'Coded Power Penaity [T T
H o Coding Gein :
— E : :
£
[
[v]
§‘-
£at
-
[
o
£,
&
b
B S OSSO TOD SUPURE S "Nt AU PR SRR o ”
o i L H
0 2 4 8 8 10 12 14 16 18 20

Channel Separation (1)

Figure 4: Power penalty/coding gain versus normalized channel separation for (31,27) code with N = 2000. The
channel separation is normalized to the coded bit rate 1/T for the coded network, and to the bit rate 1/T}, for the
uncoded network.
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